

A Micro controller based Furby™ Toy

COMP630
Computer System Design

Prepared by
Juanita D. Heidebrecht

Niagara College of Applied Arts & Technology, Canada

November 27, 2000

Furby™ Toy Project

Table of Contents

1.0 Abstract

2.0 Project Specifications
3.0 Concept and Theory (How Furby™ works)
4.0 Hardware Design (Specifics)
 4.1 MAX232 RS-232 driver/receiver
 4.2 Shift Register
 4.3 H-Bridge
5.0 Firmware Design (Specifics)
 5.1 Summary of Software Operations

 5.2 Major Program Features:
 5.2.1 Software UART
 5.2.2 Motor Movement
 5.2.3 Data Acquisition
6.0 Performance Tests
7.0 Conclusions
 7.1 Improvements
8.0 Appendices

8.1 Photographs the prototype Furby™ toy and board
 8.2 Schematic Diagram
 8.3 Flow Chart

8.4 ASM Code Listing
8.5 Front-end C++ Program

1.0 Abstract

The project consists of a Furby™ toy whose microprocessors were removed and replaced with
PIC16F84 chip on a PIC prototype board.

The toys moves commence a command being received via RS-232 communication or one of the
toy’s sensors being pressed. The prototype board has a MAX232 driver chip with self-contained
charge pump which generates the positive and negative voltages required for the RS-232 interface.
The RS-232 specifics are 2400-baud rate; no parity, and one stop bit.

The single-chip PIC micro-controller functions as software UART, receiving a single serial ASCII
character that is then interpret as a command for toy’s new micro-controller to execute. A shift
register is used to take in sensors information form the toy. This shift register is hooked up to the
PIC micro-controller where it deciphers the inputs.

The user may view the toys’ movements by press pre-defined characters or using the menu features
on the front-end c++ software. Also, by pressing sensors on the toy, more movements and wav
files are executed. For example, press ‘t’ on the computer keyboard will result in a wav file being
played and the character “t” sent to the toy via RS-232 standards. When the “t” is received, the
Talking function call will be called and executed; and then the toy will reset in preparation for the
next command.

2.0 Project Specification

Power Parameters:
 Single power supply, 5-6 volt, <250mA
 Must output +5 volt, 195-200mA to power the motor
 To be hooked up directly to the Furby™ and to the external H-Bridge
Data Input/Output:
 RS-232 Serial, 2400 baud, No Parity, 1 Stop, No Flow Control
 Shift Register (74HC165): For The Furby™ Sensors
Integrated Circuits Employed:
 PIC16F84 single-chip micro controller
 MAX232 single-supply RS-232 Driver/Receiver
 74HC165 Shift Register
Major Software Functions:
 Software UART
User Interface:
 Computer Front End: Windows C++ Program. Program consists of a Window with a menu
and menu accelerators; each menu item sends a command to the toy to complete a task and the
program may play a sound.
 Furby(tm) Sensor such as Tummy, Mouth & Back

3.0 Concepts & Theory

The Furby™ toy goes thorough a continuous loop waiting for a command. There are two ways in
which the toy can receive commands: sensor on the toy being activated or a command received by
RS-232 serial communication from the computer.

Each one of the toy's sensors are tied high, therefore each sensor is active low input. There is no
de-bounce code to combat mechanical sensors but there is a series of inputs taken and then
compared. This eliminates false readings from the sensors.

In the RS-232 serial communications, an ASCII characters (commands) are received and sent via a
serial cable that is attached to a COM port at the computer and to a MAX232 chip at the other end.
The MAX232 chip converts +-5-15 volt signals into logic 1 (+5 volts) and logic 0 (0 volts) which
the PIC then can take in. Characters are received/sent at 2400-baud rate; there is more of a delay
and less chance of error compared to 9600-baud rate. The software functions as a UART to
assemble received bits into characters. The incoming characters representing a command go
through a check to recognize the command and then executed.

The data is received in ASCII, for example the letter "s" is sent as character 0x73.
Possible Parameter types for commands are:
0x52 R Reset
0x53 S The Surprised look (position)
0x62 b Blink eyes motion
0x63 c Close Mouth position
0x71 q Quite! Closed eyes position
0x72 r Reset
0x73 s Sleeping motions
0x74 t Talking motions
0x77 w Wiggle those ears and eyes motion

Data is also sent to the computer in ASCII. For example, when a sensor is touched such as the
tummy, a command is sent to the computer to execute a command to play a wav file.
Possible Parameter types for commands are:
0x54 T Tummy Sensor: the command "T" is sent to the "Front

End" C++ software to play a wave file
0x46 f Feed Sensor: the command "f"
0x42 B Back Sensor: the command "B"

4.0 Hardware Design
The prototype was constructed on a PICPROTO board for ease of development. The major
components of the system are a Furby™ toy, PIC16F84 single-chip micro controller, a 74HC165
Shift Register, and a MAX232 RS-232 driver/receiver.

4.1 MAX232 RS-232 driver/receiver

The MAX232 has two receivers and two drivers; this chip contains a built-in charge-pump that
produces both positive and negative 10-volt supplies needed for the drivers. Only one line of each
is used for the RS-232 communication in this project.

4.2 Shift Register

74HC165 is a CMOS based shift register: parallel in and serial out. Eight individual data input
lines (parallel) are taken in serially (through one input line to the PIC), where it can be clocked as
needed. Another line is needed to the PIC to clock data in.

4.3 H-Bridge

An external H-Bridge is not needed unless the H-Bridge on the toy gets ruin somehow. In that
event, here is a schematic of a H-bridge to assemble together.

Make Q6 & Q11 2N3904 (NPN), the other NPN transistors (Q8 & Q7) to Darlington transistors
TIP120 and the other PNP transistors (Q10 & Q9) to Darlington transistors TIP125. The
Darlington transistors can provide current up to 3 A.

5.0 Firmware Design

5.1 Summary of Software Operation

The main loop of the program continually checks for inputs from the shift register and checks for a
start bit present on the serial line. The shift register takes in inputs from the toy's sensors such as
the tummy sensor, back sensor and the feed sensor. Eight-bit input from the shift register is taken
in three times, the start bit from the serial line is checked between each of the three shift register
checks. After the third time the shift register is checked, the three sets of shift register inputs are
compared for three consecutive sensor detections. For example, if the feed input bit is low in each
set of inputs then the feed sensor was for sure touched and eliminates errors such as de-bounce.

If a start bit is detected at the serial receive input, the code jumps out of the loop into the software
UART routine to assemble received bits into an ASCII character. After the character is received,
the software jumps into a command check routine that is really assemble style if and else
statements.

When in the command checking routine, if a command is recognized to be a command; it then
jumps out of the routine to the specific command routine. For example, when the character "s" is
received, it is recognized for the command for sleeping. The software jumps to the sleeping routine
where it executes a series of movement commands.

5.2 Major Program Features:

5.2.1 Software UART

The software UART is used to assemble incoming bits into a character. To detect a start bit, bit
something of Port B is checked with a bit test instruction as follows:

 btfsc PORTB,1 ;if line is low, start bit is present
 goto ContinueOn ;received a high: No start bit yet, re- check
 btfss PORTB,1 ;recieved a low, checks again
 btfsc PORTB,1 ;a low was for sure received and now falls
 ;through to the delay call for the start bit
 goto ContinueOn
 call StartBitDelay ;Have to waite 1.5 times the cycle for
 ;the start

Just like the shift register, data is taken in as it is clocked but the clocking is done by a baud rate.
The software is designed to take in and send data at a baud rate of 2400 (1/2400th of a second). As
the bits are taken in, it is assembled into an eight-bit ASCII character.

 btfsc PORTB, 1 ;waiting for the start of the next bit
 bsf STATUS,C ;set the next bit (1)
 btfss PORTB, 1
 bcf STATUS,C ;clear the next bit (0)

 rrf ReceivedCommandByte,f ;shift all the bits to the right
 incf ReceiveBites,f ;increment the bit counter

 call ReceiveDelay ;need 104u second delay between bits

When logic 1 is detected by the PIC, it originally came into the MAX232 chip anywhere from –3 to
–25 volts and logic 0 was anywhere from +3 to +25 volts. The MAX232 converts these signals
into understandable logic levels.

5.2.2 Motor Movement

There is a Forward and Reverse routine. Each one makes sure that only one bit is set on at any one
time. There are two lines from the PIC that controls the motor and both lines should not be set on
at the same time. There is also a stop motor routine that makes sure that both bits are set off.

KeepLookingForGEAR_Forward

call FORWARD
call ShortDelay
btfss PORTB,6 ;Check the Gear
goto KeepLookingForGEAR_Forward

The Forward Motion and Reverse Motion routine controls how long the motor stays on. A variable
named something is set to hold the number of times the gears are to rotate around. Actually the
gears go around ten times before it is counted as a gear rotation bundle.

5.2.3 Data Acquisition

Besides the UART, the other way that data is acquired is thorough the shift register. Only three
lines are needed: one line to take in the data, one to enable and disable the sift register and the other
line to clock the shift register. First, enable the shift register and, clock the shift register by creating
a trigger effect: set the line one then off right away. Now, check the input line/third line for a high
or a low. Take it the data and shift the bits to the right within the input variable (Temp).

bsf PORTA,0 ;Enable the Shift Register
NextInputBit

 bsf PORTA,1 ;Create the trigger (clocking)
 bcf PORTA,1

btfsc PORTA,3 ;waiting for the start of the next bit
 bsf STATUS,C ;set the next bit (1)
 btfss PORTA,3
 bcf STATUS,C ;clear the next bit (0)

 rrf Temp,f ;shift all the bits to the right

6.0 Performance Tests

1) RS-232 Receive Tests
 An incoming ASCII character is received and interpreted as a command
 1.1) A command routine is called
 1.2) The command routine designates the number of gears to rotate
 1.3) Then calls either the Forward or Backwards routines
 1.4) Visual movement of the Furby™ appears

2) RS-232 Send and Shift register test
 A sensor is activated and an ASCII character is sent as a command
 1.1) Press one of the toy's sensors and an ASCII character is sent to the computer and the
wiggle eyes command is executed
 1.2) Visual evidence of the ears moving appears
 1.3) Hear audio evidence of a wave file from the computer

7.0 Conclusion

The PIC micro-controlled Furby™ toy as described thus far is pictured in the following pages and
was “Kicking Awesome” project to do.

This project has no practical purpose, other than to prove that it is possible to remove the
microprocessors already there and have them replaced with a PIC16F84 chip where the toy can be
“reprogrammed” to do the same things but when the user wants them to happen.

7.1 Improvements

No improvements are planned. This project sits as is for now. However, all source code and
resources will be available for anyone to make improvements and changes. There is room for
many changes. Since the original source code only took up 428 words out of the 1000 words
possible on the PIC16F84 chip; many changes and added features are possible. AND, are
encouraged.

Some changes/add features that could be accomplished:

1. After a preset amount of time, if none of the sensors or a command has been received
then an event could happen. An event, such as the toy making a movement and a wav
file played.

2. Interfacing with the LPC speech processor the original Furby™ allowing the toy itself to
“speak”

3. Hooking up the speakers on the toy to the audio output lines on the computer
4. The front end c++ software could be enhanced with active bitmaps

8.0 Appendices

The appendices are as follows:

 8.1 Photographs the prototype Furby™ toy and board
 8.2 Schematic Diagram
 8.3 Flow Chart
 8.4 ASM Code Listing
 8.5 Front-end C++ Program

8.1 Photographs the prototype Furby™ toy and board

Top View

Front View

View of the H-Bridge

View of the Shift Register

Closer look

8.2 Schematic Diagram

The following 6 pages are a schematic of the Furby™ and the replacement parts.

 Top Left
 Bottom Left
 Top Right
 Bottom Left
 Original Microprocessor
 Replacement Microprocessor

NOTE: All parts on this page
 are located inside the
 Furby(TM)toy

Page 1 of 6

Top LeftFurby(TM)
This document was created by
Chris Brown's orginal pdf file
www.hackfurby.com/schematic.html
And adapted to be used by a
PIC16F84

Date: October 21,2000

Orginal: Chris Brown Jan 25,1999
Changes: Juanita Heidebrecht

_

 Furby (TM)

Size REV 1.1

Right
IR Transmitter

D2

1
2
3
4
5
6

1
2
3
4
5
6

GRN+
YEL-

ORG-
BRN+

BLK
RED

Light Sensor
Middle

R29
1MR
15

4

3
1

2
11

LM324
U4A

S9013H-844
Q4

2.
4K

R
12

1KR
26

+5V

Switched

10
0K

R
14

15
0K

R
13

10
K

R
16

1p
F

C
8

C
11

C
12

10
0K

R
18

D3

5

6
7

LM324

U4B

C
15

2.
2u

F

C
9

C13

10
 O

hm

R
7

27
0K

R
25

3.
3K

R
19

4.
7K

R
21

BLK
RED

MICROPHONE

9

10
8

LM324

U4C

13

12
14

LM324

U4D

C
16

C
14

2.2M
R22

D
4

4.
7M

R
23

100KR24

Left

IR Receiver

Q3

To Point A

To Point B

To Point C

To Point D

3.
3K

R
17

C17

Q2

S8050D-836

S9012G-646

Q1

D
1

43 Ohm

R8

100 OhmR91uFC5

To Point E

Switched
+6V

Switched
+6V

Switched
+6V

Switched
+6V

Switched
+6V

+6V

NOTE: All parts on this page
 are located inside the
 Furby(TM)toy

Page 2 of 6

Bottom LeftFurby(TM)

This document was created by
Chris Brown's orginal pdf file
www.hackfurby.com/schematic.html
And adapted to be used by a
PIC16F84

Date: October 21,2000

Orginal: Chris Brown Jan 25,1999
Changes: Juanita Heidebrecht

_

 Furby (TM)

Size REV 1.1

3 4

U5B

74HC14

1 2

U5A

74HC14

9 8

U5D

74HC14

R31

10K

R30

1M

R28

10K

R27

1K

1110

U5E

74HC14

D6

R
33

0
O

hm

R
32

33
 O

hm

Point A Point B

To Point F

R
26

4.
7K

C18

C1 SW5
Cam Position

To Point G

To Point M

To Point O

LEVEL
TILT
UPSIDE DOWN

Ball Switch

3
1

2

U6

R
39 1M

R
3

1M

1
2
3
4

1
2
3
4

ORG
BRN
BLK
RED

R
1

47
K

Feed Switch

S4

To Point H
To Point I

To Point K

D5
Gear Position LED

56

U5C

74HC14

To Point L

Reset Switch

S5

SW3

Back Switch

1
2

1
2

RED
BLK

To Point N

To Point J

Q5

Gear Position Sensor
+6V

+5.31V

+5.31V

+6V

NOTE: All parts on this page
 are located inside the
 Furby(TM)toy

Page 3 of 6

Top RightFurby(TM)

This document was created by
Chris Brown's orginal pdf file
www.hackfurby.com/schematic.html
And adapted to be used by a
PIC16F84

Date: October 21,2000

Orginal: Chris Brown Jan 25,1999
Changes: Juanita Heidebrecht

_

 Furby (TM)

Size REV 1.1

Power Supplies

13 12

74HC14

U5F

1.2K

R38
S9012G-835

Q12

10uF

C21

1uF

C4

Sits on top of LM324

220uF

C22?

1uF

C6

1uF

C7

+5V

Switched

C10

/POWER DOWN
To Point F

BAT1

BAT2

BAT3

BAT4

D3 D4

5.31V 4.86V

+6V

+6V

NOTE: All parts on this page
 are located inside the
 Furby(TM)toy

Page 4 of 6

Bottom RightFurby(TM)

This document was created by
Chris Brown's orginal pdf file
www.hackfurby.com/schematic.html
And adapted to be used by a
PIC16F84

Date: October 21,2000

Orginal: Chris Brown Jan 25,1999
Changes: Juanita Heidebrecht

_

 Furby (TM)

Size REV 1.1

4.7K

R37

4.7K

R36 Q6

S8050D-836

S8550D-840
Q9

M DC MOTOR
1
2

1
2

RED
BLK

0.1uF 0.1uFS8050D-836
Q8

Q11

S8050D-836

Q7

S8550D-840

S8050D-836

Q10

+6V

+6V

43 Ohm

R5

100 Ohm
R34

To Point Q

To Point P

NOTE: All parts on this page
 were located inside the
 Furby(TM)toy

Page 5 of 6

Orginal MicroprocessorsFurby(TM)

The Orginal schemematic was created by
Chris Brown's orginal pdf file
www.hackfurby.com/schematic.html

This document shows the orginal microprocess
on the Furby(TM) Toy. Microprocessor #1 and
Microcossor #2 will be replaced with a
PIC16F84 chip. See page 6.

Date: October 21,2000

Orginal: Chris Brown Jan 25,1999
Changes: Juanita Heidebrecht

_

 Furby (TM)

Size REV 1.1

R10
0 Ohm

R6 4.7K

R11
4.7K

R5 4.7K

3.58MHz

C3C2

C4

2425

3

4

20

11

14

12

15

16

17

18

1

19

21

23

5

22

2

9

10

8

6

7

13

Microprocessor #1

R4 4.7K

R2
22K

To Point F
/POWER DOWN

5.31V

Point O
RESET

Point N
BACK

Point M
/CAM HOME

Point L
GEAR_LED_ON

Point K
GEAR_ROTATION

Point J
/FEED

Point I
UPSIDE DOWN

Point H
TILT

Point G
LIGHT

Point F
/POWER_DOWN

Point D
/SOUND_IN

Point C
IR_IN

SPEAKER

4.86V

Point P
MOTOR REVERSE

Point Q
MOTOR FORWARD

SW2

TUMMY SWITCH

1
2
3
4

1
2
3
4

ORG
BRN
BLK
RED78

6

5

4

3

2

1

12

11

10

9

Microprocessor #2

+6V

D1

Cs

CLK

G
N

D
Vc

c

D0
1

2

3 4

5
6

93C46

EEPROM
1K (128× 8)

This page describes the parts that are on the
PIC Protype Board.
The Points alone the left side will be wires
that will bridge the Furby(TM) and the protype
board.

These parts are located on
the PIC Protype Board

Points that are not used Replacement Parts

Needed for 'hooking up'
to a computer COM port

The MAX232 and surrounding parts
are located on the PIC Protype
Board unless mentioned otherwise

Page 6 of 6

Juanita Heidebrecht

Furby(TM)

Date: October 21,2000

_

 Furby (TM)

Size REV 1.1

R2IN
R1IN

T2OUT
T1OUT

-10V

+10V

R2OUT
R1OUT

T2IN

T1IN

C2-
C2+

C1-
C1+ 12

3

4
56

7

8 9

10

11

13

14

MAX232

RS-232 Transceiver

15pF 15pF

10
uF

/1
6V

10
uF

/1
6V

10
uF

/1
6V

10
uF

/1
6V

Vcc

1
2
3
4
5
6
7
8
9

J1

Serial Connector

OSC1/CLK IN

OSC2/CLK OUT

GND

Vss

RA4/TOK1

RBO/INT

RA0

RA1

RA2

RA3

RB1

RB2

RB3

RB4

RB5

RB6

RB7

MCLR

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

LM13700AN

PIC16F84

4MHz0uF1

VCC

Point Q
MOTOR FORWARD

Point P
MOTOR REVERSE

Point O
RESET

Point N
BACK

Point K
GEAR_ROTATION

Point I
UPSIDE DOWN

Point H
TILT

Point G
LIGHT

Point F
/POWER_DOWN

Point D
/SOUND_IN

Point C
IR_IN

Point M
/CAM HOME

Point L
GEAR_LED_ON

Point J
/FEED

/CLR

SH//LD

CLKINH

CLK

SERIN

A

B

C

D

E

F

G

H QH

9
15
6
7

1
2
3
4
5

10
11
12
14 13

74ALS166N

IR OUT
Point E

8.3 Flow Chart

Set PIC

Check for
start bit

Get the
command from
the computer and
execute the
command

Yes

Take in Sensor
Input

No

AT the third time
of checking, was a
sensor touched
touched?

No

Execute a
function call
depending on
the sensor

Yes

Done

Done

8.4 ASM Code Listing

;***
; Furby(TM)
; Version 008: Finally Version, extra movements have been added
; File Name: F008.ASM
; Author: Juanita Heidebrecht, 9308771
; Date: November 19, 2000
; Class: COMP630, Computer Engineering Technology
; School: Niagara College of Applied Arts & Technology
;
;***
; Target: PIC16F84 MCU Assembler: MPASM 2.15
;
; Hardware:
; Port B
; RB0 MAX232 TxD1 (Output)
; RB1 MAX232 RxD1 (Input)
; RB2 Motor Forward (Output)
; RB3 Motor Reverse (Output)
; RB4 CAM (Input)
; RB5 Gear_LED_ON (Output)
; RB6 Gear_Rotation (Input)
; RB7 N/A
;
; Port A
; RA0 74HC165 Pin 1 PL / Shift Register enable (Output)
; RA1 74HC165 Pin 2 CP1 / Clock #1 (Output)
; RA2 N/A
; RA3 74HC165 Pin 9 / Serial Output From Last State (Input)
; RA4 N/A
; RA5 N/A
; RA6 N/A
; RA7 N/A
; * 74HC165 Pin 15 is now hooked up to ground directly instead of
; using the PIC.
; * Extra Hardware layout
; 74HC165 Pin 11 Sound
; 74HC165 Pin 12 Light
; 74HC165 Pin 13 Tilt
; 74HC165 Pin 14 Upsidedown
; 74HC165 Pin 3 Tummy
; 74HC165 Pin 4 Back
; 74HC165 Pin 5 Reset
; 74HC165 Pin 6 n/a - never got accurate info from this one
; NOTES:

; This program uses 2400-baud rate without flow control. This
; program looks its best when used with the front end that was
; made for it.
;***
; Define type of processor to use and include file of standard EQUs
;
 LIST P=16F84
 include "P16F84.INC"

;***
; Define Registers Used
;***

;Constants
MaxPointer equ 10 ;3, maximum number Input Flag Reg.
Bundle equ 11 ;20, maximum bunch of Gear Sensor
Eight equ 12 ;8, maximum number of bits in a byte

;Delay Variables
DelayTemp equ 13
DelayT2 equ 14
DelayTempS equ 15
DelayTempSS equ 16

;Database
FurbyINPUT1 equ 17 ;Input Flag Register
FurbyINPUT2 equ 18
FurbyINPUT3 equ 19
FurbyINPUT4 equ 20

;Gear Variables
EightBites equ 21 ;Counter, just for eight bytes
Current_State equ 22 ;Hold the Current postion of Furby(TM)
Gear_Counter equ 23
Cam_Counter equ 24
Inc_Counter equ 25

;Temperary Variables
Temp equ 26 ;Temperary General Register
Counter equ 27 ;Temperary General Register/Counter
GearCycles equ 28 ;Temperary holder for the number gear
 ;cycles
WantedPosition equ 29 ;Temperary holder for wanted position

;NOTES:

;384 cycles needed for 2400-buad rate :. 127 //417us
;95 cycles needed for 9600-buad rate :. 31 //104us
;16/18 cycles needed for 57200-buad rate :. 5
BuadRate equ 30
SendCommandByte equ 31
SentBites equ 32
ReceivedCommandByte equ 33
ReceiveBites equ 34

;***
; Beginning of the main part of the program
;***
main
 ;PORTB::Input:1,4,6/Output:0,2,3,5
 ;Port 7 not used
 movlw b'11010010'
 tris PORTB

 ;PORTA::Input:3/Output:1,0
 ;Ports 7-4(not used)
 movlw b'11111100'
 tris PORTA

 call SETPIC ;Clear all Output ports

RESETPROGRAM
 call RESET
 call LongDelay
ContinueToCheckInputs
 clrf EightBites
 btfsc PORTB,1 ;if line is low, start bit is present
 goto ContinueOn ;received a high: No start bit yet, re- check
 btfss PORTB,1 ;recieved a low, checks again
 btfsc PORTB,1 ;a low was for sure received and now falls
 ;through to the delay call for the start bit
 goto ContinueOn
 call StartBitDelay ;Have to waite 1.5 times the cycle for
 ;the start
 call RECEIVECOMMAND
 call CHECKCOMMANDS
 nop

ContinueOn
 call GETSRINPUT ;Get Input from any of the
 ;Furby(TM) Sensors
 movf FSR,w

 sublw FurbyINPUT4
 btfss STATUS,Z
 goto ContinueToCheckInputs
 call CHECKINPUTS ;check inputs to determine if there was anything
 call RESETVARIABLES
 goto ContinueToCheckInputs

;***
;FUNCTION CALLS/METHODS
; :. Below are all the function call made by the root of the
; program. Each function has its own duty, which may call
; apon other function calls to complete the task. The most
; complicated function call may call an endless number of
; other function calls
;
;***

;***
; BACK
; The back sensor was touched. The command 'B' is then sent
; to the computer and the command wiggle is then called for
; execution
;***
BACK
 movlw 0x42 ;B
 movwf SendCommandByte
 call SENDCOMMAND
 call WIGGLE
 return
;**
; Blink
; A 'b' was received from the computer serially. This function
; call's purpose is to mimic a person blinking their eyes
;**
BLINK
 movlw 0x10
 movwf GearCycles ;
 call Move_Forward
 call Delay
 movlw 0x05
 movwf GearCycles ;
 call Move_Backwards
 call LongerDelay
 call RESET
 return
;**

; Check Commands
; As serial information is called in via RS-232, each character is
; then checked against a predefined command. Once recognized,
; the command is then executed (called)
;**
CHECKCOMMANDS
 movf ReceivedCommandByte,w
 sublw 0x74 ;t
 btfss STATUS,Z
 goto CheckSleep
 call Talking
 return
CheckSleep
 movf ReceivedCommandByte,w
 sublw 0x73 ;s
 btfss STATUS,Z
 goto CheckScared
 call Sleeping
 return
CheckScared
 movf ReceivedCommandByte,w
 sublw 0x53 ;S
 btfss STATUS,Z
 goto CheckWingle
 call Scared
 return
CheckWingle
 movf ReceivedCommandByte,w
 sublw 0x77 ;w
 btfss STATUS,Z
 goto CheckCLOSE_MOUTH
 call WIGGLE
 return
CheckCLOSE_MOUTH
 movf ReceivedCommandByte,w
 sublw 0x63 ;c
 btfss STATUS,Z
 goto CheckQUITE
 call CLOSE_MOUTH
 return
CheckQUITE
 movf ReceivedCommandByte,w
 sublw 0x71 ;q
 btfss STATUS,Z
 goto Checkblink
 call QUITE

 return
Checkblink
 movf ReceivedCommandByte,w
 sublw 0x62 ;b
 btfss STATUS,Z
 goto CheckReset
 call QUITE
 return
CheckReset
 movf ReceivedCommandByte,w
 sublw 0x72 ;r
 btfss STATUS,Z
 goto CheckRESET
 call RESET
 return
CheckRESET
 movf ReceivedCommandByte,w
 sublw 0x52 ;R
 btfss STATUS,Z
 goto NoCommands
 call RESET
 return
NoCommands
 return
;**
; Check Furby(TM) Inputs
; This function call checks each sensor. I did not use
; interupts and therefore had to be creative in how I would
; interprete if there was a sensor being used while still being
; able receive incoming RS-232 commands
;**
CHECKINPUTS
;CheckReset
 btfsc FurbyINPUT1,0 ;looking for a 0
 goto CheckBack
 btfsc FurbyINPUT2,0
 goto CheckBack
 btfsc FurbyINPUT3,0
 goto CheckBack
 call RESET
 return
CheckBack
 btfsc FurbyINPUT1,1 ;looking for a 0
 goto CheckTummy
 btfsc FurbyINPUT2,1
 goto CheckTummy

 btfsc FurbyINPUT3,1
 goto CheckTummy
 call BACK
 return
CheckTummy
 btfsc FurbyINPUT1,2 ;looking for a 0
 goto CheckFeed
 btfsc FurbyINPUT2,2
 goto CheckFeed
 btfsc FurbyINPUT3,2
 goto CheckFeed
 call TUMMY
 return
CheckFeed
 btfss FurbyINPUT1,3 ;looking for a 1
 return
 btfss FurbyINPUT2,3
 return
 btfss FurbyINPUT3,3
 return
 call FEED
 return
;**
; Close Mouth
; A 'c' was received serially via RS-232. This function call
; mimics someone closing their mouth
;**
CLOSE_MOUTH
 movlw 0x07
 movwf GearCycles
 call Move_Backwards
 call LongerDelay
 call RESET
 return
;**
; Delay Routines
; Below is a listing of a varity of delays, each having their
; own unique function
;**
LongerDelay ;A delay that the user can see
 movlw .8
 movwf DelayTempSS
delayler
 call LongDelay
 decfsz DelayTempSS,f
 goto delayler

 return
;..
LongDelay ;Approx 125 mS delay
 movlw .255
 movwf DelayT2
ldelaya
 call Delay
 decfsz DelayT2,f ;Decrement this register and
 goto ldelaya ; keep going until it hits zero
 return
;..

Delay ;Short delay
 movlw .255 ;Load Temp register with constant
 movwf DelayTemp ;for .3 ms
delaya
 decfsz DelayTemp,f ;Decrement until zero
 goto delaya
 return
;..
ShortDelay
 movlw .100
 movwf DelayTempS
delayS
 decfsz DelayTempS,f
 goto delayS
 return
;..
ShortestDelay
 movlw .25
 movwf DelayTempSS
delaySS
 decfsz DelayTempSS,f
 goto delaySS
 return
;..
SendDelay
;9600 need .25 and a nop
 movlw .119
 movwf BuadRate
SendLoop
 decfsz BuadRate,f
 goto SendLoop
 nop
 nop
 return

;..
ReceiveDelay
 movlw .119
 movwf BuadRate
ReceiveLoop
 decfsz BuadRate,f
 goto ReceiveLoop
 return
;..
StartBitDelay
 movlw .170
 movwf BuadRate
StartBitLoop
 decfsz BuadRate,f
 goto StartBitLoop
 return
;**
; FEEDME
; One of the sensors was touched and now an 'F' is sent to the
; computer and a little wiggle is executed
;**
FEED
 movlw 0x46 ;f
 movwf SendCommandByte
 call SENDCOMMAND
 call WIGGLE
 call LongerDelay
 return
;**
; Forward
; Forward motion command function call, this was set up
; orginally so bit 3 and bit 2 are not set on at the same
; time automatically.
;**
FORWARD
 bcf PORTB,3
 bsf PORTB,2
 return
;***
; GET INPUTS FROM SHIFT REGISTER
; This function call takes in inputs from the shift register
; serially thorough a shift register
;***
GETSRINPUT
 bsf PORTA,0 ;Enable the Shift Register
NextInputBit

 bsf PORTA,1 ;Create the triger
 bcf PORTA,1

 btfsc PORTA,3 ;waiting for the start of the next bit
 bsf STATUS,C ;set the next bit (1)
 btfss PORTA,3
 bcf STATUS,C ;clear the next bit (0)

 rrf Temp,f ;shift all the bits to the right
 incf EightBites,f ;increment the bit counter

 movf EightBites,w ;checking for the eight's bit
 sublw .8 ;to make that byte
 btfss STATUS,Z
 goto NextInputBit ;8 bits have not been received yet - agian
 bcf PORTA,0 ;8 bits have been received now

 movf Temp,w ;Move the contents into the safe place
 movwf INDF
 incf FSR,f ;Increment the pointer
 return
;**
; Halloween Take, The
; I thought that eyes & mouth when open while the ears were
; straight up made a good scared or surprised position.. This
; function call is not relevant but was cute.
;**
Scared
 ;I want to send a singal to the computer to play a scray noise
 movlw 0x06
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 call LongerDelay
 call RESET
 return
;**
; Move Forward
; this function call counts the number of times the gears goes
; around so I can fake movement. This is not very accurate but
; is close enough that when making other packaged function call
; the toy looks as if it goes to the same place each time. It
; is not true. It depends on many factors and timing has a lot
; to do with it.
;**
Move_Forward

 movlw .0
 movwf Gear_Counter ;need this one
 movwf Inc_Counter ;need this one
KeepGoingForward
 movlw .0
 movwf Gear_Counter ;Clear the Gear Counter
KeepLookingForGEAR_Forward
 call FORWARD
 call ShortDelay
 btfss PORTB,6 ;Check the Gear
 goto KeepLookingForGEAR_Forward
 call STOPMOTOR
 incf Gear_Counter,f
 movf Gear_Counter,w
 sublw Bundle ;Move motors 20 pulses
 btfss STATUS,Z
 goto KeepLookingForGEAR_Forward
 incf Inc_Counter,f
 movf Inc_Counter,w
 subwf GearCycles,w ;The End yet?
 btfss STATUS,Z
 goto KeepGoingForward ;Still have to move motors
 return
;**
; Move Backwards
; this function call counts the number of times the gears goes
; around so I can fake movement. This is not very accurate but
; is close enough that when making other packaged function call
; the toy looks as if it goes to the same place each time. It
; is not true. It depends on many factors and timing has a lot
; to do with it.
;**
Move_Backwards
 movlw .0
 movwf Gear_Counter ;need this one
 movwf Inc_Counter ;need this one

KeepGoingBackwards
 movlw .0
 movwf Gear_Counter ;Clear the Gear Counter
KeepLookingForGEAR_Backwards
 call REVERSE
 call ShortDelay
 btfss PORTB,6 ;Check the Gear
 goto KeepLookingForGEAR_Backwards
 call STOPMOTOR

 incf Gear_Counter,f
 movf Gear_Counter,w
 sublw Bundle ;Move motors 20 pulses
 btfss STATUS,Z
 goto KeepLookingForGEAR_Backwards
 incf Inc_Counter,f
 movf Inc_Counter,w
 subwf GearCycles,w ;The End yet?
 btfss STATUS,Z
 goto KeepGoingBackwards ;Still have to move motors
 return
;***
; QUITE!!!
; A 'q' was received from the computer via RS-232. This is,
; if nothings else cute little function call. Not a compete
; routine package.
;***
QUITE
 movlw 0x10
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 call RESET
 return
;**
; HOME
; This function call is a primmer. It is the most important
; function call. It is the 'home' position where the toy
; repositions itself after each function call. This function
; calls gives me the ability to fake movements : make furby™
; appear to being mimicking something.
;**
RETURNHOME
KeepLookingForCAM ;Position Furby(TM) home
 call REVERSE
 call STOPMOTOR
 btfsc PORTB,4 ;Check for CAM
 goto KeepLookingForCAM
 call STOPMOTOR
 movlw .0
 movwf Current_State ;Hold current position
 return
;**
; Receive a Command from the computer
; this function call was taking from my lab 3 (RS-232
; communication). It allows me to taking in information

; from the computer and interpret them correctly
;**
RECEIVECOMMAND
 ;Just need to receive on byte(a command/option)
 ;ReceivedCommandByte
 clrf ReceiveBites
NextRXBit
 btfsc PORTB, 1 ;waiting for the start of the next bit
 bsf STATUS,C ;set the next bit (1)
 btfss PORTB, 1
 bcf STATUS,C ;clear the next bit (0)

 rrf ReceivedCommandByte,f ;shift all the bits to the right
 incf ReceiveBites,f ;increment the bit counter

 call ReceiveDelay ;need 104u second delay between bits

 movf ReceiveBites,w ;checking for the eight's bit
 subwf Eight,w ;to make that byte
 btfss STATUS,Z
 goto NextRXBit ;8 bits have not been received yet - again
 return ;8 bits have been received - can return now
;**
; Reset The Furby(TM)
;**
RESET
 call RESETVARIABLES
 call RETURNHOME
 call LongDelay
 return
;**
; Reseting Variables
; Addresses are reset to the beginning position and variables
; are cleared
;**
RESETVARIABLES
 movlw .0
 movwf FurbyINPUT1 ;Clear a Input Flag
 movwf FurbyINPUT2
 movwf FurbyINPUT3
 movwf EightBites
 movwf Temp
 movwf Counter
 movlw FurbyINPUT1 ;Making the pointer
 movwf FSR
 return

;**
; Reverse
; This function call is for backward motion. This was set up
; originally so bit 3 and bit 2 are not set on at the same
; time automatically.
;**
REVERSE
 bcf PORTB,2
 bsf PORTB,3
 return
;**
; Send a Command to the computer
; this function call was taking from my lab 3 (RS-232
; communication). It allows me to send information
; to the computer and interpret them correctly
;**
SENDCOMMAND
 ; Just need to send one byte (a command/option)
 clrf SentBites
 bcf PORTB,0
 call SendDelay ;Start bit
NextTXBit
 btfsc SendCommandByte,0
 bsf PORTB,0 ;set the next bit (1)
 btfss SendCommandByte,0
 bcf PORTB,0 ;clear the next bit (0)
 rrf SendCommandByte,f ;shift all the bits to the right
 incf SentBites,f ;increment the bit counter
 call SendDelay
 movf SentBites,w
 subwf Eight,w
 btfss STATUS,Z ;Check if 8 bits have been sent
 goto NextTXBit ;8 bits have not been sent,
 ;must continue
 bsf PORTB,0 ;End
 return
;**
; Setup the Pic
; Purpose: Setup the states on the Outputs and initialize any
; constances
;**
SETPIC
 bsf PORTB,0 ;RS-232 TxD1
 bcf PORTB,2 ;Forward Control
 bcf PORTB,3 ;Reverse Control
 bsf PORTB,5 ;Turn the GEAR_LED_ON

 ;and Leave it on
 bcf PORTA,0 ;Shift Register Enable line
 ;Active Low
 bcf PORTA,1 ;CP1 Clock Control
 movlw .3
 movwf MaxPointer ;3, maximum number Input Flag Reg.
 movlw .10
 movwf Bundle ;20, maximum bunch of Gear Sensor
 movlw .8
 movwf Eight ;8, maximum number of bits in a byte
 return
;**
; Sleeping away
; A 's' was received from the computer. The toy will now
; mimic someone sleeping but standing up :)
;**
; Sleeping Away
Sleeping
 ; I would like to send a command to the computer to play a wave file
 movlw 0x13
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 movlw 0x4
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 movlw 0x6
 movwf GearCycles ;
 call Move_Backwards
 call LongerDelay
 movlw 0x5
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 movlw 0x5
 movwf GearCycles ;
 call Move_Backwards
 call LongerDelay
 movlw 0x5
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 movlw 0x5
 movwf GearCycles ;
 call Move_Forward

 call LongerDelay
 call LongerDelay
 call RESET
 return
;**
; Stop the motor
; Making sure that both bits is set low, as to stop any
; movement
;**
STOPMOTOR
 bcf PORTB,2
 bcf PORTB,3
 return
;**
; Talk
; A 't' was received from the computer. This function call makes
; the toy mimic someone talking
;**
; Talking Away
Talking
 ; I would like to send a command to the computer to play a wave file
 ;movlw 0x26
 movlw 0x05
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x07
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x04
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x07
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x06
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay

 movlw 0x05
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Forward
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x05
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 call LongerDelay
 call RESET
 return
;**
; Tummy was touched
; The tummy sensor was touched
;**
TUMMY
 movlw 0x54 ;T
 movwf SendCommandByte
 call SENDCOMMAND
 call WIGGLE
 return
;**
; Wiggle ears
; A cute and useless function call
;**
WIGGLE

 movlw 0x02
 movwf GearCycles ;
 call Move_Backwards
 call LongDelay
 movlw 0x03
 movwf GearCycles ;
 call Move_Forward
 call LongerDelay
 call RESET
 return
;**
; The End of the Program
;**
 END
;**

8.5 Front-end C++ Program

Menu Commands:
File
COM 1 Select COM Port 1 to communicate with
COM 2 Select COM Port 2 to communicate with
Exit Exit the program
Activities
Blink The toy appears to blinks his eyes
Close Mouth The toys appears to close his mouth
Quite! The toys appears to go into a shut down position
Reset The toy resets itself
Sing The toy appears to be singing a song
Sleeping The toy appears to be sleeping
Surprised The toy appears to be surprised or scared
Talk The toy appears to be talking
Wiggle The toy appears to wiggle his ears
Help
About.. Informs user about the program

